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The contribution of nonresonance inelastic collisions of atoms or
molecules to the transport coefficients is examined within the frame-
work of the classical approximation of collision theory. Attention is
concentrated on transitions between upper levels adjacent to the con-
tinuous spectrum. A general estimate is obtained for the total inelastic
collision cross section, and certain limiting cases are investigated.

The kinetic theory of gases with internal degrees
of freedom [1, 2] permits expression of the transport
coefficients in terms of the so-called collision inte-
grals, whichtake inelastic processes into account. For
the collision of a structured and a structureless par~
ticle (we confine ourselves to this case), the following
two integrals are the most important:
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Here, Ej are the energy levels of the structured par-
ticle of mass My; T isthe temperature in energy units;
w and w' are the relative velocities of the colliding
particles before and after collision; M* = myM,/(m, +
+ Mg) is the reduced mass; m, is the mass of the struc-
tureless particle; Wik isthe probability of a transition
accompanied by a change of relative velocity w — w!
and internal state Ei — Eyx;
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is the normalized Maxwellian relative velocity distri-
bution.

Clearly, the quantities Q@ depend importantly on the
entire set of inelastic collision probabilities Wik,
which, as a rule, are only approximately known, and,
even in this case, finding sums of type (2) involves

cumbersome computations, Therefore, we have at-
tempted to find quantities (1) directly on the basis of

the classical approximation of collision theory [3, 4].
This method permits us to make certain estimates of
the role of inelastic collisions of atoms and electrons
with atoms.

1. The classical approach tothe structured particle
implies that its "simple" component particles with
masses m and mg(m + my = Mg) have classical veloc-
ities v, vy and coordinates R, Ry; their interaction is
described by the effective potential V (r = R — Ry).
The motion of the structured particle as a whole is
characterized by the distribution function Fy(Gg) of the
velocity of the center of inertia Gy = mv + mgvy/ My,
while the internal state with negative energy 0 = —E =
= min V(r) is given by the distribution
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where g = v — v is the relative velocity of the par-
ticles m and my, and py = mmy/M; is their reduced
mass.

In the classical approximation, the interaction of a
structured and an impinging particle m, (with velocity
vy distributed according to the law fy(vy)) is treated
asthe scattering of a particle m (or mg) at m,, accom-
panied by an instantaneous change of velocity g =v —
— Vv, by g', as a result of which there is a change inthe
energy of relative motion in the structured particle.
"Instantaneity™ of collision means that the character-
istic dimensions of the region of interaction of the
particles m (or my) and m, must be much less thanthe
characteristic dimension of the structured particle in
the state with binding energy —E.

It follows that the classical approximation, in which
the discrete character of the spectrum of the struc-
tured particle is disregarded, can be used to calculate
means of type (2) when: a) the chief contribution to
these means is made by transitions between highly
excited states; b) the density of these states

2 pdg,dr
p(E)=§6{_Ew%g“V(r)}ﬁh3o (4)
is such that the distances between neighboring levels
are small in comparison withthe mean particle energy
m,T : pT > 1; and c) the total number of these states

is large:
5 p(E)dE > 1.

2. Thus, we will consider the collision of a station-
ary structured particle [Fo(Gp) = 6(Gg)] in a state with
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energy —E and a particle my. For the present we con-
fine ourselves to the interaction of mj, and m, which
we characterize by the differential cross section for
elastic scattering do(g). Then, the probability of a
transition with change of velocity w — w' is gdo.
Multiplication of gd ¢ by the delta function (3) and in-
tegration over the scattering angles, dw, and phase
space uidgdr/ h® is equivalent to the summation over
all end states Eg in (2). The subsequent integration
over all permissible values of E corresponds to sum-
mation over the initial states. Introducing the notation
M =m +m,, 4 =mmy/M and going over to the new
integration variables g and u = (p/M*)gg + (1m15/M)vy,
we arrive at the expression
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The integral 9(2’2), which we henceforth leave out of
consideration, has a similar, but more unwieldy form.
If do does not depend on the azimuthal scattering
angle, integration over all directions of g' permits a
transformation of the first factor of the integrand to
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and the replacement of do in (5) with
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the effective cross section for momentum transfer.
After integration over the angles, Eq. (5) takes the
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the integration with respect to u being confined to the
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is the velocity of the particle with mass m for finite
motion of the pair m + mg with energy —E.

Expression (6) takes into account, in the classical
approximation, all the elastic and inelastic collisions
of the particle m, with the particle My in all bound
states, including the lower ones for which the continu-
ous spectrum approximation is known to be incorrect.
Therefore, in (6) the integration with respect to E
should be confined to the region of highly excited
states, while quantum calculations must be used to
take inelastic collisions withlower states into account.
We note, however, that owing to the large distances
between these levels and their small populations (as
compared with the ground state), the part played by
nonresonance collisions with atoms and molecules in
lower states should evidently be very small,

3. In certain cases, a further simplification of
integral (6) is possible, If the mean velocity of particle
m is small in comparison with (T/M*/2, i.e.,
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(in the numerator, the ‘integration with respect to E is
confined to the highly excited states), then, expanding
shx, chx, and exp (x) in series, we obtain under the
integral sign
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and, retaining only the first term, we find
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It is easy to see that the first factor in (8) is simply
the relative number of atoms (molecules) in excited
states, while the second
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reduces to the ordinary elastic collision integral for
the particles m and ms,,

In the other limiting case (M*v’?> T), when the
relative motion of particles m and m, is chiefly de-
termined by the finite motion of the particle m, in
integral (6) we can replace shx and chx with exp (x)/2
and integrate with respect to g, expanding near the
point g = v:
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Retaining the first term of this expansion, after
simple transformations we obtain
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At first glance it might appear that, by analogy
with (8), this expression should contain the averaging
over the finite motion of the quantity (mgg,/M,;)Soy.
However, this is not so, since in this case the change
of velocity of the particle m, (in the system of the
center of inertia of the particle M) is chiefly related
to the change of the velocity of the center of inertia
of the structured particle after scattering of the fast
particle m on the almost stationary particle m,, as
distinct from the case M*v? <« T, when the change
of velocity of the fast particle m, is determined by
scattering on a stationary particle and the center of
inertia of the system, m + mgy, remains fixed,

4. We use the results obtained to estimate the role
of inelastic processes in the collision of various
particles with single-electron atoms, The Coulomb
potential describing the interaction of a valence elec-
tron and a nucleus leads to the divergence of Q and
other quantities of type (8), (9). To eliminate this
effect, it is possible to use the screened Coulomb
potential

selecting the screening radius R in accordance with
the state of the gas mixture in question, For example,
in a slightly nonideal plasma, R is the ordinary Debye
radius, and R > ¥ T. The statistical sum over the
bound states and the number of these states in the
screened Coulomb field [5] are, respectively, equal

(without regard for spin) to
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where I is the ionization potential of the atom, and ay
is the Bohr radius,

Simple calculations, perfectly analogous to those
made in (5), give
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and inequality (7) takes the form
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In the event of the collision of an atom and an elec-
tron (py = M* = me), criterion (11) of the immobility
of the finite electron (and, a fortiori, the nucleus) is
satisfied, owing to the smallness of the parameter
¢’/RT. In this case o = 2re’A/p’e?, where A is the
Coulomb logarithm, and the contribution of inelastic
collisions of the electron with the atomic electron or
nucleus is
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Thus, the inelastic collision of a free electron with
an excited atom reduces to scattering of the electron
on almost stationary, weakly interacting charges, the
scattering on the nucleus being smaller by a factor of
4 than that on the finite electron. In integral (1), the
quantity (12) is combined with the averaged diffusion
cross section for elastic scattering on an atom in the
ground state:
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Total cross section for inelastic collisions
{oin’ between electrons (wa? units) and
hydrogen atoms (solid lines, the figures
denote the pressure in atm)., For com-
parison: a — (ge}? [6], b) the quantity
me'/T?, which determines the order of the
Coulomb cross sections; the line ¢ inter-
sects the isobars at the points where the
degree of ionization.is equal to 10%.
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We compare this quantity, which is tabulated in [6],
with {oin/. Using calculations of the degree of ioniza-
tion of atomic hydrogen [7] and the formulas for N, Q,
and {cip’, we arrive at the results given inthe figure,
Clearly, there are regions of temperatures and pres-
sures, where the fraction of atoms in excited states
is large, and the contribution of inelastic collisions
to the integrals Q exceeds that of elastic collisions.

However, in these regions, the degree of ionization

is so large that electron-atom collisions have almost
no effect on the transport phenomena.

We now consider the collisions of two atoms, one
of which is inthe ground state and transitions in which
are not taken into account. The interaction of this
atom and the nucleus should be taken into account in
accordance with (8), and since inthis case the quantity
oy is on the order of the gas-kinetic cross sections,
(oin’ is approximately a factor N/Q smaller than the
cross section for elastic collision of two atoms in the
ground state,

The interaction with the finite electron of the ex-
cited atom under the same conditions as considered
above should be estimated in accordance with (9),
Assuming, for simplicity, that oy = 0gq is constant,
we have
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Neglecting exp (E/T), extending the integration with
respect to E to « and going over tothe new variable 7:
exp (- 7) = TER/e?, we obtain
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Under the conditions considered above, owing to the
smallness of N/Q, the quantity (13)is small in compar-
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ison with the cross section for elastic scattering of
hydrogen atoms, For atoms with a smaller ionization
potential and greater masses, and at M*e%/meRT > 1,
the opposite situation is clearly possible but the anal-
ysis of such cases lies outside the scope of this
article.

The case of collision between a heave charged par-
ticle and an atom is also of interest. The interaction
with the nucleus is found from (8) and is exactly equal
to (12). The interaction with the finite electron should
be found from (9), but in view of the Coulomb nature
of oy the corresponding integrals with respect to E
diverge at the lower limit, which is due tothe assump-
tion, made in deriving (9), that the free particle is
stationary. Therefore, noting that (9) is the averaging
of oy over the finite motion, we replace {gp®) with
(g%, after which
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In a number of cases, this quantity may be quite large;
however, a more accurate estimate is possible only if
the integral (6) is correctly evaluated.

REFERENCES

1. C. S. Wang-Chang and G, E. Uhlenbeck, Trans-
port Phenomena in Polyatomic gases, Univ, of Michi-
gan, Publ,, CM-681, 1951,

2, L. Monchick, K. Yun, and E. Mason, J. Chem.
Phys., 39, 654, 1963,

3. M. Gryzinski, Phys. Rev., 138, A 305, 1965.

4, V. M. Dubner and N, V, Komarovskaya, Ab-
stracts of Reports tothe Fifth International Conference
on the Physics of Electronic and Atomic Collisions [in
Russian], Leningrad, 1967,

5. L. S, Veksler and V, M. Dubner, Teplofizika
vysokikh temperatur, 4, 730, 1966,

6. V. M. Dubner, Teplofizika vysokikh temperatur,
2, 648, 1964.

7. L. I, Grekov et al., Basis Properties of Certain
Gases at High Temperatures [in Russian], Mashin-
ostroenie, Moscow, 1964,

23 August 1967 Institute of High Temperatures
AS USSR, Moscow



